( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في

Σχετικά έγγραφα
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.

الا شتقاق و تطبيقاته

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح

تقديم حاول العلماء منذ العصور القديمة تحديد مماسات لبعض المنحنيات. وأسفرت أعمال جملة من الر ياضيين و الفيز يائيين فيمابعد خاصة نيوتن (Newton)

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

تايضاير و مولع يئاهن Version 1.1 اي ل

متارين حتضري للبكالوريا

)الجزء األول( محتوى الدرس الددراتالمنتظرة

Ay wm w d T d` T`ylq - tf Tyly t T w A An A : ÐAtF± : TyF Cd Tns

بحيث ان فانه عندما x x 0 < δ لدينا فان

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6

إسالم بوزنية ISLEM BOUZENIA الفهرس

Le travail et l'énergie potentielle.

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ...

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم

التاسعة أساسي رياضيات

تمارين توازن جسم خاضع لقوتين الحل

لجھة... نيابة... دفتر النصوص األستاذ : ...

1/ الزوايا: المتت امة المتكاملة المتجاورة

فرض محروس رقم 1 الدورة 2

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن

التاسعة أساسي رياضيات


OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥

رباعيات األضالع سابعة أساسي. [

بحيث = x k إذن : a إذن : أي : أي :

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A

دروس رياضيات - أولى ج م علوم

jamil-rachid.jimdo.com

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي

(Tapis roulant)

ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا

1A. المتجهات *- المفهوم: االتجاه هو عبارة عن متجه الوحدة. حيث أن اتجاه المتجه A يعرف بالصيغة التالية:

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph

التفسير الهندسي للمشتقة

با نها خماسية حيث: Q q الدخل. (Finite Automaton)

**********************************************************************************

جمهورية العراق وزارة الرتبية املديرية العامة للمناهج الرياVضيات لل صف ال ساد س الأدبي ت أليف

حركة دوران جسم صلب حول محور ثابت

********************************************************************************** A B

التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s )

الدور المحوري لسعر الفائدة: يشكل حلقة وصل بين سوقي السلع والنقود حيث يتحدد سعر الفائدة في سوق

**********************************************************

الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :

مق اس الر اض ات دروس وتطب قات للسنة األولى تس ر السداس األول من إعداد األساتذة: بن جاب هللا الطاهر السنة الجامع ة:

X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version

Ακαδημαϊκός Λόγος Εισαγωγή

8. حلول التدريبات 7. حلول التمارين والمسائل 3. حلول المراجعة 0. حلول االختبار الذاتي

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.

تعلي ا عام مكونا ال وضو

Εμπορική αλληλογραφία Παραγγελία

02 : رقم الوحدة المجال الرتي المستوى: 3 التطورات + ر+ الدرس : 02. lim. lim. x x Kg A = Z + N. + x = x y e = a = .

3as.ency-education.com

Dipôle RL. u L (V) Allal mahdade Page 1

( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade Page 1.

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB

ﻉﻭﻨ ﻥﻤ ﺔﺠﻤﺩﻤﻟﺍ ﺎﻴﺠﻭﻟﻭﺒﻭﺘﻟﺍ

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية

تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH

منتديات علوم الحياة و الأرض بأصيلة

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc

التا ثیر البینیة المیكانیكیة

أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي:

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2

1-1. تعاريف: نسم ي 2-1. أمثلة: بحيث r على النحو التالي: لنأخذ X = Z ولنعرف عليها الدالة 2. عدد طبيعي فردي و α عدد صحيح موجب. وسنضع: =

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.

الميكانيك. d t. v m = **********************************************************************************

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة

الموافقة : v = 100m v(t)

Transcript:

الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة عند النقطة ذات الا فصل في الحالات التالية أ- ب- 4 si ج- نشاط حدد الدالة المشتقة للدالة بعد تحديد مجمعة تعريف آل من في الحالات التالية 4 أ- - + ( ) - ب - ) ( + ر- ta د ج + sicos نشاط + cosπ si حد د π π B) تذآير - الاشتقاق في نقطة أ- تعريف لتكن دالة عددية معرفة في مجال مفتح مرآزه ( ) ( ) نهاية l في نرمز لها ب قابلة للاشتقاق في اذا آانت للدالة ( ) ( + h) ( ) ( ) يسمى العدد المشتق ل في. نكتب h h l على اليمين في d ( ) α ( ) ( ) [ [ نقل إن الدالة l العدد. ( ) ب- تكن متصلة في آل دالة قابلة للاشتقاق في الاشتقاق على اليمين - الاشتقاق على اليسار أ- تعريف ; حيث لتكن دالة معرفة على مجال من شكل + α نقل إن نرمز لها ب قابلة للاشتقاق على اليمين في إذا آانت للدالة نهاية + نهاية l () ( ) α ( ) ( ). d ( ) العدد لتكن l يسمى العدد المشتق ل دالة معرفة على مجال من شكل على اليمين في نكتب α; ] حيث ] نقل إن نرمز لها ب قابلة للاشتقاق على اليسار في إذا آانت للدالة على اليسار في g ( ) () ( ). g ( ) يسمى العدد المشتق ل على اليسار في نكتب العدد l ب تكن قابلة للاشتقاق في إذا فقط إذا آانت العدد المشتق على اليمين يساي العدد المشتق على اليسار. قابلة للاشتقاق على اليمين على اليسار في

قابلة للاشتقاق في آل نقطة من.. - الد الة المشتقة أ- تعريف نقل إن قابلة للاشتقاق على المجال إذا آانت الدالة التي تربط آل عنصر من بالعدد ب- عمليات على الدال المشتقة - لتكن g دالتين قابلتين للاشتقاق على مجال + g + g تسمى الدالة المشتقة نرمز لها ب لا تنعدم على λ g بحيث ( g) g + g ( λ ) λ g g g g { } g g g لتكن لتكن دالة قابلة للاشتقاق على مجال دالة قابلة للاشتقاق على مجال لا تنعدم على 4- الكتابة التفاضبية. dy اذا آانت ) y ( قابلة للاشتقاق على المجال فاننا نكتب اصطلاحا ) ( أ dy ( ) d d هذه الكتابة تسمى : الكتابة التفاضبية. 5- التا يل الهندسي معادلة المماس لمنحنى دالة أ- المماس Cمنحناها لتكن دالة معرفة على مجال مفتح مرآزه قابلية اشتقاق في ت ل هندسيا بجد مماس ل C معادلته ) )( ( y + - - عند النقطة ذات الا فصل ب- نصف المماس إذا آانت قابلة للاشتقاق على اليمين في اليسار في ) أ على C يقبل نصف مماس عند النقطة ذات الافصل ( g ) أ ( فان ( d ) معامله المجه : d : T y + T y + g M نقطة مزاة ( T ) : y ( ) + ( ) g ( T ): y ( ) + ( ) d

+ ج- نصف مماس ماز لمحر الاراتيب () ( ) إذا آانت متصلة في آان ± () ( ) أ ± فان C ل نصف مماس ماز لمحر الا راتيب. ( ) ( ) - مشتقة دالة مرآبة مشتقة الدالة العكسية - مشتقة دالة مرآبة لتكن دالة قابلة للاشتقاق على مجال g قابلة للاشتقاق على فان g عنصرا من آانت قابلة للاشتقاق في g قابلة للاشتقاق في إذا آان. قابلة للاشتقاق في g g قابلة للاشتقاق على دالة قابلة للاشتقاق على مجال لتكن g ( ) ( ) g g نتيجة اذا آانت فان دالة قابلة للاشتقاق على مجال قابلة للاشتقاق على مجبة قطعا على دالة معرفة على ب g ) ) بعد تحديد مجمعة تعريف الدالة المشتقة g تمرين أحسب في الحالتين التاليتين ( ) ( b ; cos 4 ( a - مشتقة الدالة العكسية لتكن دالة متصلة رتيبة قطعا على مجال إذا آان عنصرا من آانت قابلة للاشتقاق في فان الدالة للاشتقاق في ( ) () ( )( ( )) ( ) ) ( π π π نحدد ثم مثال : نعتبر ; ta 4 π π ; π + ta لدينا 4 π ; π دالة متصلة رتيبة قطعا على مجال π π ( ) ) ( ( ) أي () منه 4 π 4 4 إذا دالة رتيبة قطعا قابلة للاشتقاق على مجال لا تنعدم على فان الدالة قابلة

( ) ] ; + [ ] ; + [ ( ) ( ) للاشتقاق في ) ( - تطبيقات أ مشتقة دالة الجدر من الرتبة : لدينا الدالة تزايدية قطعا قابلة الاشتقاق على لا تنعدم على ( pq ; ) p q ] ; + [ : (] ; [) ] ; [ + + منه الدالة العكسية قابلة للاشتقاق على ] ; + [ ( ) ] ; + [ ( ). الدالة ملاحظة ليكن قابلة للاشتقاق على لدينا p p p p q p q q p q q نتيجة نتيجة ليكن قابلة للاشتقاق على لدينا حيث ( ) فان الدالة ( ) ] ; + [ من. الدالة + تمرين g حدد الدالتين المشتقتين لهما g أدرس اشتقاق مجبة قطعا على دالة قابلة للاشتقاق على مجال إذا آانت مجبة قطعا على. (( ) ) ( ) قابلة للاشتقاق على. نتيجة لتكن تمرين دالة قابلة للاشتقاق على مجال أحسب الدالة المشتقة للدالة بعد تحديد D D في آل حالة من الحالات التالية ( ) - ( ) ( ) 5-4 ) ( مع إعطاء جدل التغيرات - 5-4

acta قابلة ( ) ta ب- مشتقة الدالة acta فان الدالة π ; π نح ب الدالة acta هي الدالة العكسية للدالة المعرفة من π ; π ( ) + ta بما أن قابلة للاشتقاق مجبة قطعا على للاشتقاق على acta acta + ta acta + acta + الدالة قابلة للاشتقاق على acta إذا آانت الدالة u قابلة للاشتقاق على فان الدالة actau قابلة للاشتقاق على u ( acta u ) + u ( ) - تمرين أحسب مشتقة بعد تحديد حيز تعريفها في الحالتين acta acta D ( + ) acta - حدد جدل مشتقات بعض الدال a { } ] ; + [ { Du / u } u u u ] ; + [ { D u } u / ] ; + [ u u u si cos cos si 5

F قابلة π + kπ / k + ta ta asi ( a+ b) cos( a + b) acos( a+ b) si ( a + b) + u D u F u +. acta acta ( u ) - الدال الا صلية تعريف لتكن دالة عددية معرفة على مجال للاشتقاق على آان نقل إن دالة هي دالة أصلية للدالة على اذا آانت. λ حيث F F على : + أمثلة الدالة F : + دالة أصلية للدالة على : si دالة أصلية للدالة F : cos الدالة + لتكن دالة عددية تقبل دالة أصلية F على مجال مجمعة الدال الا صلية للدالة على هي المجمعة المكنة من الدال + λ على : + أمثلة - الدالة F : + دالة أصلية للدالة F λ إذن الدال الا صلية ل هي الدال F + + المعرفة على ب λ λ من y من ليكن دالة عددية تقبل دالة أصلية على مجال لتكن. G y بحيث على مجال G للدالة تجد دالة أصلية حيدة. + على مثال نحدد دالة أصلية للدالة حيث التي تا خذ القيمة عند على التالي آان λ فان g على مجال G دالتين أصليتين للدالتين F إذا آانت + g دالة أصلية ل F + G λ دالة أصلية ل λf تقبل دالة أصلية على آل دالة متصلة على مجال حدد الدال الا صلية ل تقبل دالة أصلية على بين أن ( ) ( ) 5 مثال جدل الدال الا صلية لبعض الدال الاعتيادية الدالة الدال الا صلية F مجمعة التعريف للدالة الدال F λ a + λ + + λ + a ou + + + λ + { } 6

ou + + + λ + { } + + + λ + { } π π + kπ; + kπ ; k معرفة ه المجال التي تكن فيه قابلة للاشتقاق قابلتان g ه المجال التي نكن فيه للاشتقاق قابلتان g ه المجال التي نكن فيه للاشتقاق si ( a + b ) + λ a cos ( a + b ) +λ a ta + λ ac ta + λ + + + λ + g + λ g + λ cos a + b a si a + b a + ta cos + { } + g g + g g ه المجال التي نكن فيه للاشتقاق لا تنعدم فيه g قابلتان g + λ g g g ( ] ; + [ ( ) على معلمين) على α ) لاحظ أن ) ( - تمارين حدد دالة أصلية للدالة حيث α حدد دال أصلية للدالة u ( ) ( u ) على + ( cos α u u ( ) 4 + 4 + (باستعمال الشكل القانني نحصل على حدد دال أصلية للدالة e i + e i ) ( بضع cos (يتم اخطاط - - -V تطبيقات الاشتقاق دراسة الدال A الا نشطة تمرين - حدد رتابة الدالة مطاريفها النسبية أ المطلقة إن جدت في الحالتين التالين. ( ) أ- ب- + 7+ - حدد عدد جذر المعادلة تمرين C منحنى الدالة حدد نقط انعطافه في الحالتين أدرس تقعر ب- أ- التاليتن( إن آان ممكنا). cos si 4 7

( O ( ;) أ- ج- ) لاحظ أن تمرين - حدد المقاربات إن جدت - أعط الاتجاهات المقاربة في الحالات التالية ب- ج- غير قابلة للاشتقاق مرتين في مع ذلك تقبل نقطة انعطاف في + د - C + + ان ) ; A( ( ) + + + + π si + + بين ( )( )( )( 4) ر- تمرين 4 - نعتبر نعتبر مرآز تماثل للمنحنى C 5 بين ان المستقيم الذي معادلته محر تماثل للمنحنى B- تذآير مع بعض الاضافات - تقعر منحنى دالة -- نقطة انعطاف - تعريف لتكن قابلة للاشتقاق على مجال نقل إن المنحنى محدب إذا آان يجد فق جميع مماساته ( C ) نقل إن المنحنى ) ( C مقعر إذا آان يجد تحت جميع مماساته - - خاصيات دالة قابلة الاشتقاق مرتين على مجال إذا آانت " مجبة على فان يكن محدبا على ( C ) ( C ) إذا آانت " سالبة على فان يكن مقعرا على اذا آانت " تنعدم في من المجال آان يجد + α بحيث إشارة " على α[ [ aa ; + مخالفة لا شارة ( ; ) فان Aa a نقطة انعطاف ] aα, a] على ( C ) " للمنحنى ملاحظة قد لا تكن الدالة قابلة للاشتقاق مرتين يكن مع ذلك لمبيانها نقطة انعطاف الفرع اللانهاي ية - تعريف إذا ا لت إحدى إحداثيتي نقطة من C منحنى دالة إلى اللانهاية فا ننا نقل إن C يقبل فرعا لانهاي يا. - مستقيم مقارب لمنحنى 8

( C مقارب ل( a a ± a + a- مقارب عمدي إذا آان ± أ فان المستقيم الذي معادلته ( C مقارب ل( y b ± b- مقارب أفقي إذا آان b فان المستقيم الذي معادلته ( ( a+ b)) ± ) C )إذا فقط إذا آان ( C ) y a+ b c- مقارب عمدي يكن المستقيم الذي معادلته خا صية يكن المستقيم الذي معادلته أ مقارب للمنحنى مقارب للمنحنى إذا فقط إذا آان ( a) b ; a y a+ b ( a) b ; a + + ( a+ ملاحظة دراسة إشارة (b تمكننا من معرفة ضع المنحنى ) ( C بالنسبة للمقارب الماي ل. ( C ) ± ± ± - - الاتجاهات المقاربة تعاريف نقل إن يقبل محر الا راتيب آاتجاه مقارب. نقل إن ) C )يقبل محر الافاصيل آاتجاه مقارب. ± ± أ إذا آان ± ب - إذا آان ± 9

( C نقل إن( a ± ± ± a يقبل المستقيم ذا a ± ج - إذا آان ± المعادلة y a آاتجاه مقارب محر تماثل لمنحنى دالة إذا فقط إذا آان D ( a ) b - مرآز ثماثل محر تماثل - في معلم متعامد, يكن المستقيم الذي معادلته D ( a ) ) ; ab E ( مرآز تماثل لدالة - في معلم متعامد,تكن النقطة إذا فقط إذا آان دالة درية إذا جد عدد حقيقي T مجب قطعا ب حيث ) D + T D ; T D ( + T) ( 4- الدالة الدرية -4 تعريف نقل أن العدد T يسمى در الدالة.اصغر در مجب قطعا يسمى در الدالة D, ( + T) در T فان -4 إذا آانت للدالة على [ ) ( ; [ -4 إذا آانت دالة درية T درا لها فان منحنى الدالة باسطة الا زاحة ذات المتجهة + D a+ T a+ ه صرة منحنى T T i حيث عدد صحيح نسبي. الدالة على [, [ D a a+ T C- دراسة الدال تصميم دراسة دالة في غالب الا حيان نتبع الخطات التالية لدراسة دالة زجية أ فردية أ درية) تحديد مجمعة التعريف ثم تحديد مجمعة الدراسة (خاصة إذا آانت دراسة الاتصال الاشتقاق تحديد الدالة الاشتقاق دراسة إشارتها بالا ضافة إلى التا يلات الهندسية ضع جدل التغيرات دراسة الفرع الانهاي ية تحديد المقاربات دراسة التقعر ان آان ذلك ضرريا تحديد نقط انعطاف إن جدت إنشاء المنحنى